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Chaotic dynamics of a nonlinear oscillator is considered in the semiclassical approximation. The Loschmidt
echo as a measure of quantum stability to a time dependent variation is calculated. It is shown that an
exponential decay of the Loschmidt echo is due to a Lyapunov exponent and it has a pure classical nature. The
Lyapunov regime is observed for a time scale which is of the power law in semiclassical parameter.
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I. INTRODUCTION

Classical chaotic dynamics can be characterized by a
Lyapunov exponentL. The quantized procedure stops the
classical spread of stretching and folding due to the uncer-
tainty principle and, as a result, breaks the applicability of
the semiclassical approximation. The corresponding breaking
time was found in Ref.[1] to be

t" = s1/LdlnsI0/"d, s1d

where I0 is a characteristic action. It indicates a fast(expo-
nential) growth of quantum corrections to the classical dy-
namics due to chaos. Recently this result gained a renewed
interest also related to the fidelity of wave functions or the
Loschmidt echo. In the field of quantum chaos a question on
stability of trajectories can be readdressed to stability of
wave functions with respect to a small variation of a control
parameter[3] called the fidelity of the wave functions, which
is a measure of a quantum reversibility. It is also named
“Loschmidt echo”[4], and it is known that on the time scale
of the order oft" it decays exponentially,e−Lt [4]. This
regime, known as a Lyapunov one, is a result of “hypersen-
sitivity” of this time reversibility to perturbation[5]. This
result stimulated extensive studies and different decays of the
Loschmidt echo have been observed for integrable[6,8–10],
chaotic[6,7,9,11–13] and quasi-integrable[14] systems(see
also references therein). Among these results, general consid-
eration of the Loschmidt echo beyond the Lyapunov regime
has been presented: e.g., time crossover from the Lyapunov
regime to the quantum one with the Gaussian decay[6,7] has
been observed[11] on the Heisenberg time scale of the order
of 1/"; the Fermi golden rule decay was observed versus the
Lyapunov regime[7]; also several regimes of fidelity decay
have been clarified with a presentation of the semiclassical
description for both chaotic and integrable cases[6,8]; as
well as the following development of a general approach to
echo [15] and consideration of unbounded systems like a
Lorentz gas[16,17] have been presented.

In the present paper, we show that the Loschmidt echo in
the nonlinear kicked oscillator decays exponentially due to
the Lyapunov exponent in the Lyapunov regime[4,13]. An
analytical expression for this behavior in the framework of
the semiclassical expansion is obtained. For an experimental
setup, this Loschmidt echo for the nonlinear oscillator is also

addressing the possible application for echo spectroscopy in
quantum optics[18].

Dynamics of a nonlinear oscillator with the Hamiltonian

H0 = "va†a + "2msa†ad2 s2d

is integrable[19]. Here v and m are linear frequency and
nonlinearity parameters correspondingly, while, for the cho-
sen notation, annihilation and creation operators have the
commutation rulefa,a†g=1. There is nontrivial semiclassical
expansion that leads to an appearance of so-calledD forms.
These forms are determined as derivatives over the initial
conditions, say,sa ,a* d as

D ; DsA,Bd = S ]A

]a
DS ]B

]a*
D , s3d

where AsBd=kcsaduÂsB̂ducsadl is the average value of the
operator. Therefore, theD forms determine the local instabil-
ity of a dynamical system. In the presence of a perturbation
dynamics becomes chaotic and the exponential growth of the
D forms due to the Lyapunov exponents leads to the loga-
rithmic breaking time of Eq.(1), known also as the Ehrenfest
time. That result could be transparently seen in the coherent
state basis[1,2,19], and it is independent of the choice of the
initial basis of wave functions[20]. Role of theD forms as a
sensitivity of dynamical variables to the initial conditions or
to the perturbation can be also readdressed to the wave func-
tions. More detailed consideration on theD forms for differ-
ent dynamical realizations in the nonlinear oscillator is con-
sidered separately elsewhere[21].

Originally, a question on sensitivity of wave functions to a
variance was asked in Ref.[3] to characterize quantum chaos
by the fidelity of the wave function

Mstd = Ukc0uexpHi E sH + dHddt/"JexpH− i E Hdt/"J
3uc0lU2

. s4d

It characterizes an evolution of the initial wave functionc0
governed by the two slightly different HamiltoniansH and
the variational HamiltonianH+dH. The fidelity Mstd was
also referred to as the “Loschmidt echo”[4], where dynamics
of the initial wave function due toH after timet is reversed
back to the initial state with the variational HamiltonianH
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+dH. The dynamical decay of the overlap is characterized
by the Lyapunov exponent on some semiclassical time scale
tsc, that also stands to be determined.

II. EVOLUTION OF A WAVE FUNCTION

We will consider analytically the overlap functionMstd
for chaotic dynamics of the nonlinear oscillator(2) in the
presence of a periodic perturbation of the form ofd kicks
with a periodT and an amplitudee. The Hamiltonian of the
system is

H = "va†a + "2msa†ad2 − "esa† + ad o
n=−`

`

dst − nTd

; H0 + V. s5d

For the initial wave function we choose the coherent state. At
the momentt=0 it is determined as an eigenfunction of the
annihilation operator:ast=0duast=0dl;aual=aual. It en-
ables one to study its dynamical evolution analytically in the
semiclassical limit. Evolution of a generating function was
considered in detail in Ref.[22]. We borrow some details of
that analysis with corresponding adaptation to the present
consideration. The evolution operator is

Ustd = exp̂H− iE
0

t

dtfva†a + "msa†ad2 − egstdsa† + adgJ ,

s6d

where expˆ meansT-ordered exponential, while the perturba-
tion is written asV=−"egstdsa†+ad. Under thisT-ordering
symbol all exponents commute. Therefore, one can use the
following Stratonovich-Hubbard transform[24] for the expo-
nential

exp̂F− i"mTE
0

t

dtsa†ad2/TG =E p
t

dlstd
Î4pik

3expFiE
0

t

dtl2std/4kGexp̂F− iE
0

t

dtlstda†aG , s7d

where we use thatk="mT and t /T→ t is a number of kicks
represented in the continuous form. The auxiliary fieldlstd
is a quasi-random one with the imaginary Gaussian distribu-
tion, and the integration overlstd in (7) corresponds for-
mally to the many-dimensional Fourier transform. We take
into account that the harmonic oscillator, acting on the co-
herent state, changes its phase only, and the perturbationV
acts as a shift operator. Namely, e.g., for the period one
writes

eiesa†+ade−ifls1da†aual = expfise/2dsae−ifls1d + a * eifls1ddg

3uae−ifls1da†a + iel,

where fls1d=e0
1dtfvT+lstdg is a phase on the period 1.

Therefore, acting by the unitary evolution operatorUst=1d t
times onual, we obtain finally that the wave function at time
t has the form of the following functional integral[22]

Cstd = Ustdual =E p
t

fdlstd/Î4pik gexpFiE
0

t

dtl2std/4kG
3 expfieE

0

t

dtgstdfal
* std + alstdg/2gualstdl, s8d

where

astd = e−iflstdastd = e−iflstdFa + ieE
0

t

dtgstdeiflstdG , s9d

flstd =E
0

t

dtfvT + lstdg. s10d

The wave function(8) is the evolution of the initial ket vec-
tor ual due to the HamiltonianH of (5). To obtain an echo,
we reverse dynamics at the momentt back to t=0 with a
random(e.g., Gaussian) time-dependent processhstd to add
it to the linear frequencyv. This variation of the linear fre-
quency affects efficiently the chaos control parameterK,
since the last isK=4emTuastdu2 [1]. In this context, this ap-
proach is relevant to Refs.[10,13]. It should be admitted here
that though the variationhstd is a time-dependent process, it
is also relevant to the “traditional” fidelity problem[4],
where the variation is static. For instance, it could be quasi-
static variation, which is a constant shift for the linear fre-
quency for the same periodT, and different for the deferent
periods. Therefore, evolution of the initial bra vectorkau is
due to the variational Hamiltonian[23] H+dH, with the
random time-dependent frequency

v → vh = v + hstd/T. s11d

The wave function of the variational motion is

Ch
* std = fUsh,tdualg†. s12d

For simplicity, we consider the Loschmidt echo averaged
over the Gaussian distribution

Pfhstdg ; P„hstd,h̄,s…

=
1

Î4ps
expF−E

0

t

dtfhstd − h̄g2/4sG s13d

with the nonzero first momenth̄ and the variances. It reads

Msstd =E p
t

dhstdPfhstdgMsh,td, s14d

where

Msh,td = ukChstduCstdlu2 s15d

is the Loschmidt echo for a one fixed realization ofhstd with
0,t, t. Denoting by

bl = − iE
0

t

dtgstdalstd,

we obtain the scalar product of the wave function in Eq.(15)
in the form
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Msh,td ; M
= kChstduCstdl

=E p
t

dl1stddl2std
4pk

3expF i

4k
E

0

t

dtfl1
2std − l2

2stdgG
3expFiImsal2

* al1
− ebl1

− ebl2

* d −
1

2
ual1

− al2
uG ,

s16d

whereal1
,al2

* ,bl1
,bl2

* depend onhstd due to the shift of
the linear frequencyv in Eqs.(10) and (11).

III. SEMICLASSICAL APPROXIMATION

In the semiclassical limit, whenk!1, the functional in-
tegral in Eq.(16) is strongly simplified, and its evaluation is
analytically tractable. After linear change of variables

l1 = 2m + kn/2, l2 = 2m − kn/2 − h, s17d

the phases are

fl1
=E dt fvT + l1g =E dt fvT + 2m + kn/2g,

fl2
=E dt fvT + l2 + hg =E dt fvT − 2m + kn/2g.

The Jacobian of the transformation is 2k. Taking into ac-
count these expressions for the phases we obtain from Eqs.
(9) and (10) in the semiclassical approximation that

al2

* stdal1
std − ebl1

− ebl2

* < − ikE
0

t

dtnstduastdu2, s18d

eif2mstdfal1
− al2

g < − ikE
0

t

dtnstdastd. s19d

Here astd, defined in Eq.(9), is taken fornstd;0. It gives
the definition of the classical action asIstd=kuastdu2 for k
→0 and uastdu2→`. To carry out integration overnstd we
use the following auxiliary expression[22]:

expF− sk2/2dUE
0

t

dtnstdastdU2G
=

2

pk
E d2je−2uju2/k

3expF− i
Îk

2
Rej * E

0

t

dtnstdastdG s20d

Substituting Eqs.(18)–(20) into Eq. (16), we obtain for the
scalar product of the wave functions

M =
2

kp
E d2je−2uju2/kE p

t

dmstddnstd
2p

3expF− i

4k
E dtfs4mstd − hstdgfknstd − hstddg

3expFikE dtnstdfuastd + ju2 − uju2gG . s21d

The functional integrations overnstd is exact and gives thed
function in m. Hence the integration overmstd is also exact.
After these integrations we obtain from Eq.(21)

M =
2

kp
E d2je−2uju2/k expF i

k
E dthstdĪ c,sa,a * , tdG ,

s22d

where Ī c,sa ,a* , td; IsvT−2uju2,a+j ,a* + j* , td, and we
neglect a small term of the order ofh2 in the exponential. Let
us expand the last exponential in Eq.(22) in the Taylor series
in j andj*. Therefore, we have

expF i

k
E dthstdĪ c,sa,a * , tdG

; FsvT − 2uju2,a + j,a * + j * d

= om,n,,

1

n ! m ! ,!

]m

]am

]n

]a*n

],

]svTd,

3FsvT,a,a * djmj*ns− 2uju2d,. s23d

Substituting Eq.(23) in Eq. (22) and taking into account that

2

pk
E d2je−2uju2/kj pj*q = Îsk/2dp+qÎp ! q!dp,q,

we obtain an expression for the scalar product in the form of
the expansion in the semiclassical parameterk

M = o
n,,

sn + ,d!
n ! n ! ,!

]2n

]an]a*n

],

]svTd,FsvT,a,a * d

3s− 2d,sk/2dn+,. s24d

It should be stressed that the strongest contribution to the
sum (24) for the same orders ofk is due to the derivatives
over the initial conditions, namely due to theD form

Dstd ; DsI,Id =
1

k
S ]Ist,a,a * d

]a
DS ]Ist,a,a * d

]a*
D ~ e2Lt.

s25d

Therefore, we obtain, approximately

Mhstd < expF i

k
E dthstdIc,stdG

3expF−E dthstd E dt8hst8dDfIc,std,Ic,st8dgG .

s26d

Finally, using this approximation, we obtain that the
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Loschmidt echo is determined by the following Gaussian
integral:

Msstd ~E p
t

dhstdPfhstdguMsh,tdu2. s27d

In the case of narrow packets!1, that might be roughly
approximated by ad-function Pfhstdg→dshstd−h̄d, we ob-
tain

Msstd ~ expF−
h̄2

kL2DstdG < expF−
h̄2

L2e2LtG . s28d

A possibility of such super-exponential drop-off is also men-
tioned in Ref.[9]. For an arbitrary Gaussian distribution, we
obtain that the Loschmidt echo decays exponentially like
expf−Ltg. For instance, in the opposite case, whens@1,
using the Fourier transform

e−kA2std =E dj

Î4p
e−j2/4e−ijAstd,

whereAstd=e0
t dteLthstd, we can calculate the functional in-

tegral overhstd and then overj. Finally, we have

Msstd = F2p +
4ps

L
se2Lt − 1dG−1/2

~ÎL

s
e−Lt. s29d

These decays ofMsstd in Eqs.(28) and (29) are determined
by the classical Lyapunov exponentL. This result has pure
classical nature and is independent of the semiclassical pa-
rameterk, and it survives in the classical case whenk=0, as
well.

IV. SEMICLASSICAL TIME SCALE

An analytical evaluation of the Loschmidt echoMstd by
means of the semiclassical expansion leads to some restric-
tion on time of the validity of the semiclassical description.
This time is definitely not coincided with the quantum break-
ing time t" in Eq. (1). We show thatMstd has sense on this
semiclassical time scale andMstd decays exponentially due
to theD form according Eqs.(26) and (28).

The validity of Eqs.(28) and (29) for this time scale can
be obtained from the semiclassical expansion(18) and (19)
in exponential(16) that is the semiclassical expansion for the
linear oscillator exposed to the quasi-random fieldl. There-
fore, the Jacobian of the Hamiltonian flow is

J = detu]fastd,a * stdg/]fa,a * gu

< 1 − 2k sinfmstd E nstddt + k2FE nstddtG2

. s30d

It reflects that the Liouville theorem is not valid for the av-

erages[19]. Since nstd is the quasi-random field with the
complex Gaussian distribution defined at the Stratonovich-
Hubbard transform in Eq.(7), we were able to evaluate the
integral in Eq.(30) substituting a mean value ofn. The first
moment equals zero:knstdl=0, that is why we use the sec-
ond moment equaledkn2stdl=16i /k. Substituting the square
root from the modulus ofkn2stdl in Eq. (30), we obtain for
the Jacobian

J < 1 − 8k1/2t sinfm + 16kt2.

Therefore, the validity of the semiclassical expansion carried
out in the exponential(16) and, consequently, validity of the
exponential decay ofMstd due to the Lyapunov exponent
defined in Eq.(29) is determined by the following semiclas-
sical time scale:

t , tsc, , 1/4k1/2. s31d

In the semiclassical limit, whenk!1 the following inequal-
ity is definitely true:tsc,@t".

V. CONCLUSION

We presented an analytical evaluation of the Loschmidt
echoMstd by means of the expansion over the semiclassical
parameterk="mT. We shown thatMstd has sense on the
semiclassical time scale of the order of the square root of the
Heisenberg timet,tsc,,1/Îk which is much longer than
the Ehrenfest time:tsc,@t". On this time scaleMstd decays
exponentially due to theD form according to Eqs.(26), (28),
and (29). This behavior has a pure classical nature and is
determined by the Lyapunov exponentL for both the super-
exponential decay of Eq.(28) and the exponential decay due
to Eq. (29). It is the Lyapunov regime. It should be also
admitted that the echo is due to the time-dependent variation
dHstd which could even be a random processhstd defined in
Eqs.(11) and(13). To some extent, this consideration is rel-
evant to numerical studies of the Loschmidt echo for a quan-
tum kicked rotor[13]. In this connection, the expression(31)
might also be a possible explanation of the observation in
Ref. [13] of the exponential decay ofMstd in the Lyapunov
regime for a kicked rotor on times much longer than the
Ehrenfest timet@t".
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