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Loschmidt echo for a chaotic oscillator
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Chaotic dynamics of a nonlinear oscillator is considered in the semiclassical approximation. The Loschmidt
echo as a measure of quantum stability to a time dependent variation is calculated. It is shown that an
exponential decay of the Loschmidt echo is due to a Lyapunov exponent and it has a pure classical nature. The
Lyapunov regime is observed for a time scale which is of the power law in semiclassical parameter.
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[. INTRODUCTION addressing the possible application for echo spectroscopy in
) . ) ) quantum opticg§18].
Classical chaotic dynamics can be characterized by a pynamics of a nonlinear oscillator with the Hamiltonian
Lyapunov exponent\. The quantized procedure stops the

classical spread of stretching and folding due to the uncer- Ho=twa'a+hu(a’a)? 2
tainty principle and, as a result, breaks the applicability of.

. ) S ; _is integrable[19]. Here w and u are linear frequency and
t_he semmlassmaj approximation. The corresponding breaklnﬂonlinearity parameters correspondingly, while, for the cho-
time was found in Ref{1] to be ' :

sen notation, annihilation and creation operators have the
commutation rul¢a,a’]=1. There is nontrivial semiclassical
7, = (UA)In(lo/h), D expansion that leads to an appearance of so-calléarms.

These forms are determined as derivatives over the initial

wherel, is a characteristic action. It indicates a féskpo-  conditions, say(«,a*) as

nentia) growth of quantum corrections to the classical dy-

namics due to chaos. Recently this result gained a renewed D=D(AB)= (%)( 9B ) (3)

interest also related to the fidelity of wave functions or the da )\ da*

Loschmidt echo. In the field of quantum chaos a question on ~ A )

stability of trajectories can be readdressed to stability ofvhere A(B)=(¢{a)|A(B)|¢(a)) is the average value of the

wave functions with respect to a small variation of a controloperator. Therefore, thig forms determine the local instabil-

parametef3] called the fidelity of the wave functions, which ity of a dynamical system. In the presence of a perturbation

is a measure of a quantum reversibility. It is also namedlynamics becomes chaotic and the exponential growth of the

“Loschmidt echo”[4], and it is known that on the time scale D forms due to the Lyapunov exponents leads to the loga-

of the order of7, it decays exponentially-e At [4]. This  rithmic breaking time of E¢(1), known also as the Ehrenfest

regime, known as a Lyapunov one, is a result of “hypersentime. That result could be transparently seen in the coherent

sitivity” of this time reversibility to perturbatiorj5]. This  state basi§l,2,19, and it is independent of the choice of the

result stimulated extensive studies and different decays of thiitial basis of wave functionf20]. Role of theD forms as a

Loschmidt echo have been observed for integr&®)8—10Q, sensitivity of dynamical variables to the initial conditions or

chaotic[6,7,9,11-13and quasi-integrablgl4] systemgsee  to the perturbation can be also readdressed to the wave func-

also references thergirhmong these results, general consid- tions. More detailed consideration on tBeforms for differ-

eration of the Loschmidt echo beyond the Lyapunov regimeéent dynamical realizations in the nonlinear oscillator is con-

has been presented: e.g., time crossover from the Lyapundidered separately elsewhd@].

regime to the guantum one with the Gaussian deﬁan has Originally, a question on Sensitivity of wave functions to a

been observefll1] on the Heisenberg time scale of the orderVvariance was asked in R¢8] to characterize quantum chaos

of 1/#; the Fermi golden rule decay was observed versus theY the fidelity of the wave function

Lyapunov regimg7]; also several regimes of fidelity decay

have been clarified with a presentation of the semiclassical M(t) = ‘(¢O|ex if(H+ SH)dt/h (exp) —i f Hdt/A

description for both chaotic and integrable cages]; as

well as the following development of a general approach to

echo[15] and consideration of unbounded systems like a X| o)

Lorentz gag16,17 have been presented.

In the present paper, we show that the Loschmidt echo ift characterizes an evolution of the initial wave functigg
the nonlinear kicked oscillator decays exponentially due taggoverned by the two slightly different Hamiltoniafis and
the Lyapunov exponent in the Lyapunov regifdl3. An  the variational Hamiltoniart{+§H. The fidelity M(t) was
analytical expression for this behavior in the framework ofalso referred to as the “Loschmidt ech@], where dynamics
the semiclassical expansion is obtained. For an experimentaf the initial wave function due té{ after timet is reversed
setup, this Loschmidt echo for the nonlinear oscillator is alsdack to the initial state with the variational Hamiltoniah

2

: (4)
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+6H. The dynamical decay of the overlap is characterized JE— ! 5
by the Lyapunov exponent on some semiclassical time scal¥(t) = U(t)|a) :f [T [\ (7)/\4mix Jex 'f drA“()/4x
7o that also stands to be determined. T 0

t
X exdi ff drg(Dlay(7) + en(DV2]| e (1)), (8

II. EVOLUTION OF A WAVE FUNCTION 0
We will consider analytically the overlap functiod(t)  Where
for chaotic dynamics of the nonlinear oscillat@®) in the ) _ t _
presence of a periodic perturbation of the form &kicks a(t) ="M Oa(t) =e_"'/’*(t)[a+ iéf dTg(T)e"‘s*(T)], 9)
with a periodT and an amplitude. The Hamiltonian of the 0
system is

t
°° )= | ddwT+A . (10)
H=thowala+ ﬁZIu(aTa)Z _ ﬁE(aT +a) E St=-nT) (1) fo dw (7]

The wave function(8) is the evolution of the initial ket vec-
=Ho+V. (5 tor |a) due to the HamiltoniarH of (5). To obtain an echo,
For the initial wave function we choose the coherent state. Aﬁiéﬁﬁfe dén;gglsﬁsrﬁ:n?_%emg? deerr?tacroé%tg;{g \t’;'tg d?j
the moment=0 it is determined as an eigenfunction of the . (_.g., 3 cpendent p :
annihilation operatora(t=0)|a(t=0))=ala)=ala). It en- it to the linear frequencyw. This variation of the linear fre-
ables one to study its dynamical evolution analytically in thegil;] ir;c%/h;\flfgsctt?«e_fféllueq_TIy(thZe[lc]h?r?sthic:soggrc])tleg?r&rge;er_
semiclassical limit. Evolution of a generating function was . “oeplie . . P
considered in detail in Ref22]. We borrow some details of proach is relevant to RefEl0,13. It should be admitted here

that analysis with corresponding adaptation to the preser{‘P"’lt though the Va”at'OW(f) IS .a.tlme"-d_epe.ndent process, it
consideration. The evolution operator is Is also relevant to the “traditional” fidelity problerfy],
where the variation is static. For instance, it could be quasi-

ot + a2 t static variation, which is a constant shift for the linear fre-
U(t) =exp) - |f driwa'a+fiu(a'a)® - eg(r)(a'+a)], quency for the same pericd and different for the deferent
0 periods. Therefore, evolution of the initial bra vectad is
(6)  due to the variational Hamiltoniaf23] H+SH, with the

where 8xpmeansT-ordered exponential, while the perturba- fandom time-dependent frequency

tion is written asV=-#%eg(7)(a'+a). Under thisT-ordering ®— w,= o+ /T (11
symbol all exponents commute. Therefore, one can use the . o o
following Stratonovich-Hubbard transforf4] for the expo- ~ The wave function of the variational motion is

nential \P;(t) =[U(n.t)]a)]". (12)
t
&xp —iﬁMTJ dr(aa)¥T :J I1 dA(7) For simplicity, we consider the Loschmidt echo averaged
0 » VAmik over the Gaussian distribution
! ! PL7(t)] = P(5(t), 7,
Xexp{i f dT)\Z(T)/4K:|é-X\p|:—i f de(T)aTa], @ [2(0)] = P(n(V), 7,0) :
0 0 1
= exp[—f d7‘[77(7)—ﬂ2/40} (13
where we use that=#uT andt/T—t is a number of kicks V4o 0

.represent.ed in the contm_uous fgrm. .The auxMar_y fm@ . with the nonzero first momenj and the variance. It reads
is a quasi-random one with the imaginary Gaussian distribu-
tion, and the integration ovex(7) in (7) corresponds for-

mally to the many-dimensional Fourier transform. We take M,(t) =f [T dn(Pp(DIM(7.D), (14)
into account that the harmonic oscillator, acting on the co- T

herent state, changes its phase only, and the perturbdtionwhere

acts as a shift operator. Namely, e.g., for the period one )
writes M(7,t) = [(W ()| ¥ (1)) (15

gelat+a) i ¢}\(1)a‘ra| o) = exfi(e2)(ae HD + o * ghD)] is the Loschmidt echo for a one fixed realizationmgf) with

0< r<t. Denoting by
><|ae_i¢>\(l)aTa+ i€,

t
where ¢,(1)=[3d{wT+\(7)] is a phase on the period 1. th_'f drg(n)ay(7),
Therefore, acting by the unitary evolution operatht=1) t 0
times on|a), we obtain finally that the wave function at time we obtain the scalar product of the wave function in &d)
t has the form of the following functional integrg22] in the form
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M(nt)=M
=W, ()[W (1))

_ dA\y(1)dA,(7)
- f 1:[ 47

Lot
xexpL'— [ iea —xé(r)]]
KJo

. x . 1
XeXp|:I|m(a/>\2a/)\l - Eﬁ)\l - €ﬁ)\2) - E|C¥)\l - a)\2|] y
(16)
where “M’O‘;z’ﬁkl’ﬁ;z depend onz(7) due to the shift of

the linear frequencw in Egs.(10) and (11).

IIl. SEMICLASSICAL APPROXIMATION

In the semiclassical limit, wher<1, the functional in-
tegral in Eq.(16) is strongly simplified, and its evaluation is
analytically tractable. After linear change of variables

M =2u+ kvl2, \y=2u—kvl2 -7, (17

the phases are

b\, = f dr[wT+ N\ ]= f dr[wT+ 2u + kv/2],

d))\zzde[wT+)\2+ ﬂ]:de[wT—2M+KV/2].

The Jacobian of the transformation i%.2Taking into ac-

count these expressions for the phases we obtain from Eqgs.

(9) and(10) in the semiclassical approximation that

t

a:\z(t)axl(t) - 6'67\1 - 6ﬂ;2 ~ - in dTV(T)|a(7')|2, (18)

0

t

ei¢2ﬂ(t)[a}\l - a)\z] ~ - in drv(na(7). (19

0
Herea(7), defined in Eq(9), is taken forv(7)=0. It gives
the definition of the classical action &&)=«la(t)|? for «

—0 and|a(t)|>— <. To carry out integration over(r) we
use the following auxiliary expressid2?2]:

21

t
f dTV(T)a(T):| (20)

0

t
f drv(7na(7)

0

exp{ - (K%12)

— i dzge—z\g\z/x
TK

I
/

VK
xXexp, —|? Re¢&*

Substituting Eqs(18)—<20) into Eq. (16), we obtain for the
scalar product of the wave functions
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du(7)dv(7)

2

M:idege—Zﬂzlka
Xexp[;—K' f A (4u() - (A Tkr(7) = ()]

Xexp[ixf dTV(T)[|a(T)+§|2‘|§|2]} (21)

The functional integrations ovex7) is exact and gives thé
function in . Hence the integration over(7) is also exact.
After these integrations we obtain from E&1)

M= i f dzge—Zlé\zlx exp{i— f dTr](T)l_c((a,a* ' 7.):| '
K

Ly
(22)

where l(a,a*, ) =1(0T-2|8?, a+&,a* + £, 7), and we
neglect a small term of the order gf in the exponential. Let
us expand the last exponential in E82) in the Taylor series
in & and &. Therefore, we have

eX[{,i_(de”I](T)Tcg(a,a’*,T)]

= FloT-2&fa+Ea* + &)
Y S
T Emnl nimt 6 ga™ da " A wT)

X FloT,a,a* )&= 2|g)".

(23
Substituting Eq(23) in Eq. (22) and taking into account that

2 * .
= | dege e Ikg g a= \(1/2)P\p1 gl 5,

TK o

we obtain an expression for the scalar product in the form of
the expansion in the semiclassical parameter

< (n+0)! &
M= % nin! ¢! dga"da’" dwT)"
X (= 2)(kl2)™¢, (24)

It should be stressed that the strongest contribution to the
sum (24) for the same orders of is due to the derivatives
over the initial conditions, namely due to tlbeform

l(r,a,a* ))((9'(7’,6!,6!*)

da da*

&Zn

HoT,a,a*)

) o eZAT.

(25)

D(7)=D(l,1) = %(

Therefore, we obtain, approximately

Mv(t)zexp{:—( f dm(r)|c€(¢)]

XEXP[_JdTﬂ(T)fdT/77(7")D[|c€(7')v|c€(7/)]:|-
(26)

Finally, using this approximation, we obtain that the
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Loschmidt echo is determined by the following Gaussianerages[19]. Since »(7) is the quasi-random field with the
integral: complex Gaussian distribution defined at the Stratonovich-
Hubbard transform in Eq.7), we were able to evaluate the
M, (t) e f 11 dy(DPy(n)]| M (9,12 (27) integral in EQ.(30) substituting a mean value of The first
T moment equals zerdy(7))=0, that is why we use the sec-

20\ —as e
In the case of narrow packet<1, that might be roughly ond moment equalety*(7))=16/x. Substituting the square

approximated by @-function P[7(n)]— &(7(7)-7), we ob- root from the modulus of1%(7)) in Eq. (30), we obtain for
tain the Jacobian

— J=1-8kYtsing, + 16xt2.
7 a u
M(t) = expl — —=D(t) | =~ exp — -5 |. (28
A= p[ kA? ( )} p{ A? } (28) Therefore, the validity of the semiclassical expansion carried

. . . out in the exponentigll6) and, consequently, validity of the
A possibility of such super-exponential drop-off is also men'exponential decay oM(t) due to the Lyapunov exponent

tioned in Ref.[9]. For an arbitrary Gaussian distribution, we | . . . ) . e
obtain that the Loschmidt echo decays exponentially ”kedeflned In Eq(29) is determined by the following semiclas

exd —At]. For instance, in the opposite case, whek 1, sical time scale:

using the Fourier transform t < 7o ~ 1142, (31
—en2_ |96 2 iea In the semiclassical limit, wher<1 the following inequal-
€ “) Ll ¢ ity is definitely true:zey > 7.

WhereA(t):dereATn(r), we can calculate the functional in-
tegral overn(7) and then oveg. Finally, we have

. ~1/2 We presented an analytical evaluation of the Loschmidt
M, (t) = {27” —(e?M - 1)] o \/ie—m_ (29 echoM(t) by means of the expansion over the semiclassical
A o parameterk=fuT. We shown thatM(t) has sense on the

These decays d¥l,(t) in Egs.(28) and(29) are determined Ssemiclassical time scale of the order of the square root of the
by the classical Lyapunov exponeht This result has pure Heisenberg time < 7, ~1/v« which is much longer than
classical nature and is independent of the semiclassical p#€ Ehrenfest timersy > 7;. On this time scalé/(t) decays

rameterx, and it survives in the classical case when0, as  €xponentially due to th® form according to Eq926), (28),
well. and (29). This behavior has a pure classical nature and is

determined by the Lyapunov exponehtfor both the super-
IV. SEMICLASSICAL TIME SCALE exponential decay of E@28) and the exponential decay due

An analytical evaluation of the Loschmidt echat) by ~ [© EG. (29). It is the Lyapunov regime. It should be also
means of the semiclassical expansion leads to some restrigdMitted that the echo is due to the time-dependent variation
tion on time of the validity of the semiclassical description. SH(t) which could even be a random procegs) defined in
This time is definitely not coincided with the quantum break-Eds-(11) and(13). To some extent, this consideration is rel-
ing time 7, in Eq. (1). We show thaM(t) has sense on this evant to numerical studies of the Loschmidt echo for a quan-

semiclassical time scale aM(t) decays exponentially due tum kicked rotor{13]. In this connect_ion, the expressi()fml_) .
to theD form according Eqs(26) and (28) might also be a possible explanation of the observation in

Ref. [13] of the exponential decay d¥l(t) in the Lyapunov
regime for a kicked rotor on times much longer than the
Ehrenfest time> 7,.

V. CONCLUSION

The validity of Eqs.(28) and(29) for this time scale can
be obtained from the semiclassical expangid® and(19)
in exponential16) that is the semiclassical expansion for the
linear oscillator exposed to the quasi-random figldrhere-
fore, the Jacobian of the Hamiltonian flow is ACKNOWLEDGMENTS
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